

for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz

European Technical Assessment

ETA 17/0694 of 25/10/2021

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	Sika AnchorFix [®] -3030
Product family to which the construction product belongs	Product area code: 33 Bonded fastener for use in cracked and uncracked concrete for a service life of 50 and/or 100 years
Manufacturer	Sika Services AG Tueffenwies 16 CH-8048 Zuerich Switzerland
Manufacturing plant	Sika Plant No. 503 44 08 (1138)
This European Technical Assessment contains	constructionProduct area code: 33 Bonded fastener for use in cracked and uncracked concrete for a service life of 50 and/or 100 yearsSika Services AG Tueffenwies 16 CH-8048 Zuerich SwitzerlandSika Plant No. 503 44 08 (1138)Sessment20 pages including 17 Annexes which form an integral part of this assessment.Sessment is gulation is ofEAD 330499-01-0601 Bonded fasteners for use in concrete
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	
This version replaces	ETA 17/0694 issued on 24/11/2019

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The Sika AnchorFix[®]-3030 with steel elements is bonded anchor (injection type).

Steel elements can be galvanized or stainless steel threaded rods or rebars.

Steel element is placed into a drilled hole filled with injection mortar. The steel element is anchored via the bond between metal part, injection mortar and concrete. The anchor is intended to be used with various embedment depth up to 20 diameters.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex C 1, C 2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 3, C 4
Displacements under short-term and long-term loading	See Annex C 5
Characteristic resistance and displacement for seismic performance categories C1 and C2	See Annex C 6, C 7, C 8

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

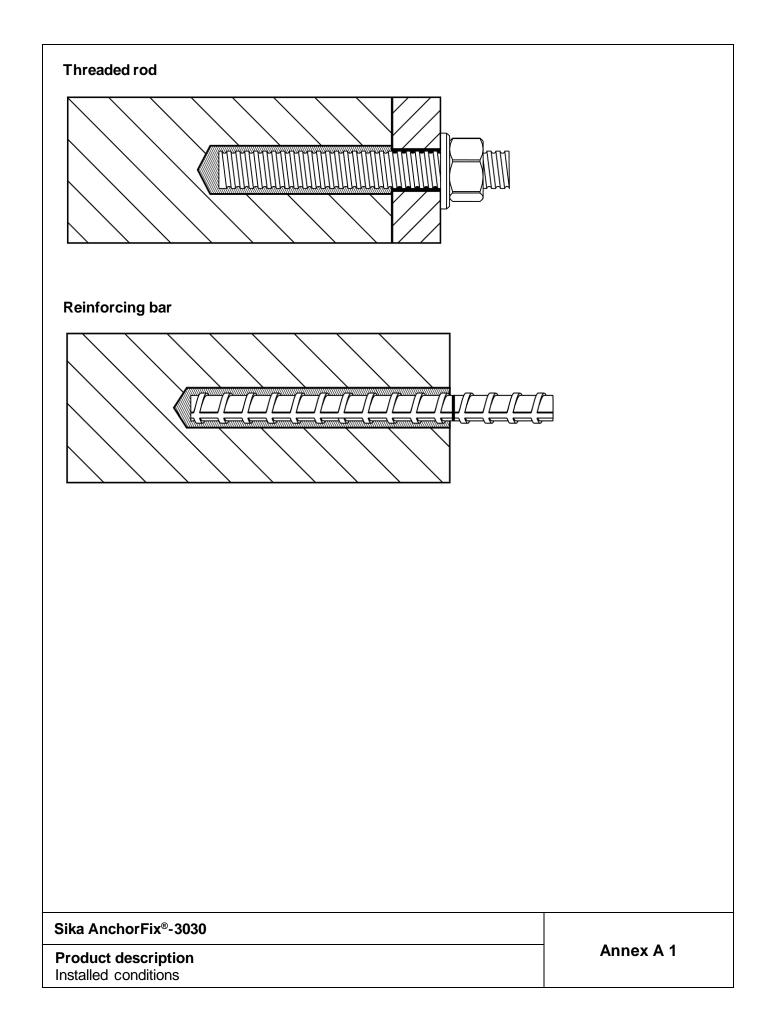
4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

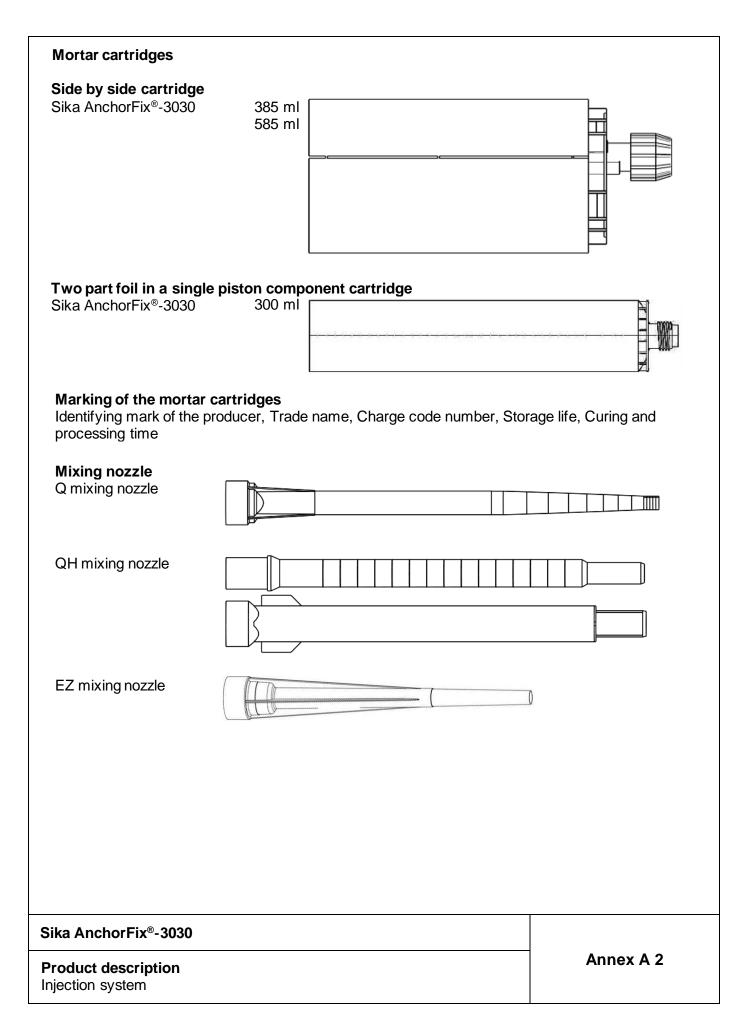
According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for	For fixing and/or supporting to concrete,		
use in concrete	structural elements (which contributes to	-	1
	the stability of the works) or heavy units		

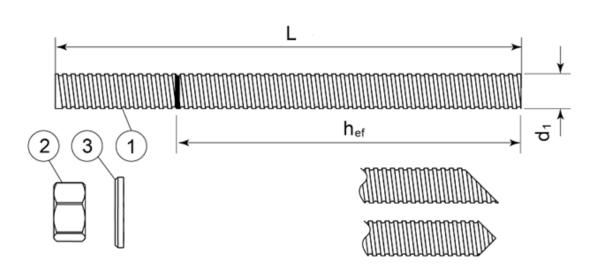
¹ Official Journal of the European Communities L 254 of 08.10.1996

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD


The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technický a zkušební ústav stavební Praha, s.p.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.


Issued in Prague on 25.10.2021

By


Ing. Mária Schaan Head of the Technical Assessment Body

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30

Standard commercial threaded rod with marked embedment depth

Part	Designation	Material	
	I, zinc plated \geq 5 µm acc. to EN ISC		
	I, FIOL-dip gaivanized \geq 40 µm acc. I, zinc diffusion coating \geq 15 µm ac	to EN ISO 1461 and EN ISO 10684 or cc. to EN 13811	
1	Anchor rod	Steel, EN 10087 or EN 10263	
		Property class 4.6, 4.8, 5.8, 8.8, 10	.9* EN ISO 898-1
2	Hexagon nut EN ISO 4032	According to threaded rod, EN 208	398-2
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
Stair	lless steel		
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN	ISO 3506
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
High	corrosion resistant steel		
1	Anchor rod	Material: 1.4529, 1.4565, EN 1008	8-1
2	Hexagon nut EN ISO 4032	According to threaded rod	
3	Washer EN ISO 887, EN ISO 7089, EN ISO 7093 or EN ISO 7094	According to threaded rod	
Galva	nized rod of high strength are sensitiv	ve to hydrogen induced brittle failure	
ika Ar	nchorFix [®] -3030		
roduc	t description		Annex A 3

Product description Threaded rod and materials

Rebar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32

Standard commercial reinforcing bar with marked embedment depth

Product form		Bars and de	-coiled rods		
Class		ВС			
Characteristic yield strength fyk or f	400 to 600				
Minimum value of $k = (f_t/f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Characteristic strain at maximum for	≥ 5,0	≥ 7,5			
Bendability	Bendability				
Maximum deviation from nominal mass (individual bar) (%)	Nominal bar size (mm) ≤ 8 > 8	±6 ±4	∂,0 I,5		
Bond: Minimum relative rib area, f _{R,min}	Nominal bar size (mm) 8 to 12 > 12	0,C 0,C			

Sika AnchorFix®-3030

Product description Rebars and materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Seismic actions category C1 (max w = 0,5 mm):
 - threaded rod size M8, M10, M12, M16, M20, M24, M27, M30
 - rebar size Ø10, Ø12, Ø16, Ø20, Ø25, Ø32
- Seismic actions category C2 (max w = 0,8 mm): threaded rod size M12, M16, M20

Base materials

- Cracked and uncracked concrete
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according EN 206:2013.

Temperature range:

• T3: -40°C to +70°C (max. short. term temperature +70°C and max. long term temperature +50°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistant steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

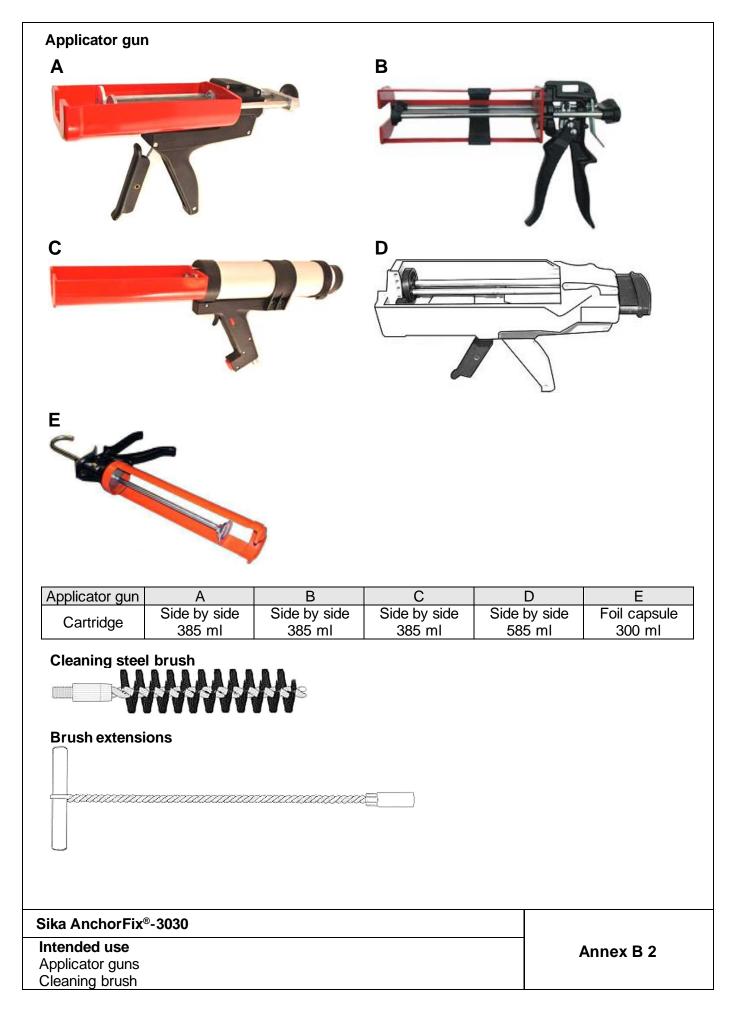
Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1 installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2 installation in water-filled (not sea water) and use in service in dry or wet concrete

Design:

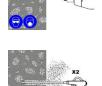
- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.


Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation


Sika AnchorFix®-3030	
Intended use Specifications	Annex B 1

Installation instructions

Before commencing installation ensure the operative is equipped with appropriate personal protection equipment, SDS Hammer Drill, Air, Hole Cleaning Brush, good quality Dispensing Tool - either manual or power operated, Chemical cartridge with mixing nozzle and extension tube, if needed.

- 1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Insert the Air Lance to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a

minimum pressure of 6bar.

Perform the blowing operation twice.

3. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and with draw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

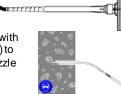
Perform the brushing operation twice.

- Repeat 2 4.
- 5. Repeat 3
- 6. Repeat 2
- 7. Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Note: The QH nozzle is in two

section is an extension piece.

sections. One section contains the mixing elements and the other


Connect the extension piece to the

mixing section by pushing the two

sections firmly together until a positive engagement

≻ॉन

- 8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use
- 9. Attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting

motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.

14. Position the fixture and tighten the anchor to the appropriate installation torque.

> Do not over-torque the anchor as this could adversely affect its performance.

Sika AnchorFix[®]-3030

is felt.

Intended use Installation procedure Annex B 3

Installation instructions

Overhead Substrate Installation Method

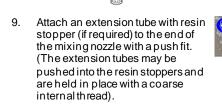
- Using the SDS Hammer Drill in 1. rotary hammer mode for drilling, with a carbide tipped drill bit of the appropriate size, drill the hole to the specified hole diameter and depth.
- 2. Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean - free from water and oil - and at a minimum pressure of 90psi (6bar).

Perform the blowing operation twice.

Select the correct size Hole Cleaning 3. Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There

should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.


- 4. Repeat 2
- Repeat 3 5.
- Repeat 2 6.
- 7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good workingorder. Place the cartridge into the dispensing tool.

Note: The QH nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two

sections firmly together until a positive engagement is felt.

8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

- 10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resinuntil the hole is approximately 3/4 full and remove the nozzlefrom the hole.
- 11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting motion to en sure complete cover, until it reaches the bottom of the hole.

Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- 12. Clean any excess resin from around the mouth of the hole.
- Do not disturb the anchor until at 13. least the minimum cure time has elapsed. Refer to the Working and Load Timetable to determine the appropriate cure time.
- 14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

Sika AnchorFix[®]-3030

Intended use Installation procedure Annex B 4

Table B1: Installation	parameters	of threaded rod
------------------------	------------	-----------------

Table DT. Installation paran		i tincu	ucuitou							
Size			M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	Ød ₀	[mm]	10	12	14	18	22	26	30	35
Cleaning brush			S11HF	S14HF	S14/15HF	S22HF	S24HF	S31HF	S31HF	S38HF
Torque moment	max T _{f≾t}	[Nm]	10	20	40	80	120	160	180	200
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	96	108	120
Embedment depth for h _{ef,max}	h _{ef}	[mm]	160	200	240	320	400	480	540	600
Depth of drill hole	h ₀	[mm]	h _{ef} +5							
Minimum edge distance	Cmin	[mm]	40	40	40	40	50	50	50	60
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	50	60
Minimum thickness of member	h _{min}	[mm]	h _{ef} +	30 mm≥1	100 mm			$h_{ef} + 2d_0$		

Table B2: Installation parameters of rebar

Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32	
Nominal drill hole diameter		[mm]	12	14	16	20	25	32	40	
Cleaning brush			S12/13HF	S14/15HF	S18HF	S22HF	S27HF	S35HF	S43HF	
Torque moment	max T _{t×t}	[Nm]	10	20	40	80	120	180	200	
Embedment depth for h _{ef,min}	h _{ef}	[mm]	60	60	70	80	90	100	128	
Embedment depth for h _{ef,max}	h _{ef}	[mm]	160	200	240	320	400	500	640	
Depth of drill hole	h ₀	[mm]	h _{ef} +5	h _{ef} +5	h _{ef} +5					
Minimum edge distance	Cimin	[mm]	40	40	40	40	50	50	70	
Minimum spacing	Smin	[mm]	40	40	40	40	50	50	70	
Minimum thickness of member	h _{min}	[mm]	h _e + :	30 mm≥100)mm		n h _{ef} + 2d ₀			

Table B3: Minimum curing time

Base Material Temperature [°C]	Cartridge Temperature [°C]	T Work [mins]	T Load [hrs]
+5	Minimum (40	300	24
+5°C to +10	Minimum +10	150	27
+10°C to +15	+10°C to +15	40	18
+15°C to +20	+15°C to +20	25	12
+20°C to +25	+20°C to +25	18	8
+25°C to +30	+25°C to +30	12	6
+30°C to +35	+30°C to +35	8	4
+35°C to +40	+35°C to +40	6	2
	Ensure cartridge is ≥ 10°	С	

T Work is typical gel time at highest base material temperature in the range.

T Load is minimum set time required until load can be applied at the lowest temperature in the range.

Sika AnchorFix[®]-3030

Installation parameters Curing time

Annex B 5

			MO	M4.0	M40	MAC	Maa	MO 4	MOZ	Maa
	N1	FL N 13	M8	M10	M12	M16	M20	M24	M27	M30
	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
	γMs	[-]	4.5		0.4		00		101	004
	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
			10		40			4 7 7	000	004
			18	29	42			177	230	281
			20	40	07			000	207	440
			29	40	67			282	367	449
			07	50	0.4			050	450	504
			37	58	84			353	459	561
A 4 70			00	44	50			0.47	004	000
A4-70			26	41	59			247	321	393
				40	07			000	0.07	4.40
			29	46	67			282	367	449
					50			0.17	004	
			26	41	59			247	321	393
			26	41	59			247	321	393
				-						
rete cone failu	ire in c	concrete C								
			M8	M10	M12	M16	M20	M24	M27	M30
	ced co									-
	$\tau_{Rk,ucr}$	[N/mm ²]	17	15	15	12	12	12	11	9,5
nole										
		[-]				1	,0			
	dconci		1	-		-	-	-	-	1
	$\tau_{Rk,cr}$	[N/mm ²]	10	10	10	9,5	9	9	6	6
nole										
	γinst	[-]				1	,0			
0 5000 / 7000	0					0	70			
3: 50°C / 70°C	Ψ ⁰ sus	[-]				0,	72			
C25/20						1	0.2			
C30/37 C35/45										
	Ψc	[-]					07			
C/0/50										
C40/50						1	00			
C45/55						1, 1	N9			
							09			
C45/55 C50/60							09			
C45/55	k _{ucr,N}					1,	09 1			_
C45/55 C50/60	k _{ucr,N}	[-]				1, 1	1			
C45/55 C50/60	k _{ucr,N}	[-]				1, 1				
C45/55 C50/60	k _{cr,N}					1, 1 7	1 ,7			
C45/55 C50/60		[-] [mm]				1, 1 7	1			
C45/55 C50/60	k _{cr,N}		MO			1, 1 7 1,5	1 ,7 5h _{ef}			
C45/55 C50/60	k _{cr,N}		M8	M10	M12	1, 1 7 1,5 M16	1 ,7 5h _{ef}	M24	M27	M30
	nce in uncrack p°C nole nce in cracked p°C nole 3: 50°C / 70°C C25/30 C30/37	γMs NRk,s γMs NRk,s γMs NRk,s γMs A4-70 NRk,s γMs Nrete cone failure in c 0°C TRk,uer 0°C TRk,uer 0°C TRk,or nole Yinst 3: 50°C / 70°C Ψ ⁰ sus C25/30 C30/37	$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table C1: Design method EN 1992-4 Characteristic values of resistance to tension load of threaded rod

Performances Design according to EN 1992-4 Characteristic resistance for tension loads - threaded rod

Steel failure – Characteristic resistar	nce									
Size		-		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S Partial safety factor	NR		[kN]	28	43	62	111	173	270	442
	·γι	Иs	[-]				1,4			
Combined pullout and concrete cone	e failure i	n o	concrete C	20/25	for a w	orking li	ife of 50) years	and 100) years
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Characteristic bond resistance in un	cracked	co	ncrete							
Temperature T3: -40°C to +70°C	τ _{Rk,}	ucr	[N/mm ²]	13	13	13	12	12	12	8
Dry and wet concrete										
Installation safety factor	γ	inst	[-]				1,0			
Flooded hole										
Installation safety factor		inst	[-]				1,2			
Characteristic bond resistance in cra	ackedco	nc	rete		1		T			
Temperature T3: -40°C to +70°C	τ _{RI}	k,cr	[N/mm ²]	8	11	10	10	9	8,5	6,5
Dry and wet concrete										
Installation safety factor	γ	inst	[-]				1,0			
Flooded hole		- 1								
Installation safety factor	γ	inst	[-]				1,2			
Factor for influence of sustained load for a T3: 50°C / 7 working life 50 years	′0°C ψ ⁰	sus	[-]				0,72			
C25 C30	5/30 0/37						1,02 1,04			
Factor for concrete C40 C45	5/45 0/50 Ψc 5/55		[-]				1,06 1,07 1,08			
Concrete cone failure Factor for concrete cone failure	0/60						1,09			
for uncracked concrete	k _{uc}	r,N					11			
Factor for concrete cone failure	k	r,N	[-]				7,7			
for cracked concrete		,								
Edge distance	Cc	r,N	[mm]				1,5h _{ef}			
Splitting failure										
Size				Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Edge distance	0		[mm]		010	512	2 • h _{ef}	520	525	202
Spacing	C _{CI} S _{CI}		[mm]				2 • Tief 2 • C _{cr,sp}			
ika AnchorFix [®] -3030 erformances									۸۳۳۵	v C 2
esign according to EN 1992-4 haracteristic resistance for tensio									Anne	x C 2

ize			M8	M10	M12	M16	M20	M24	M27	M30
iteel grade 4.6	V _{Rk,s}	[kN]	7	M10 12	17	31	49	71	92	112
artial safety factor				12	17		,67	71	92	112
iteel grade 4.8	γMs Ver		7	12	17	31	,07 49	71	92	112
v	V _{Rk,s}		/	12	17		,25	71	92	112
Partial safety factor	γMs		0	45	04			0.0	445	4.40
iteel grade 5.8	V _{Rk,s}		9	15	21	39	61	88	115	140
Partial safety factor	γMs		45	00	0.4		,25	4.4.4	404	004
iteel grade 8.8	V _{Rk,s}		15	23	34	63	98	141	184	224
artial safety factor	γMs		10		40		,25	477	000	004
iteel grade 10.9	V _{Rk,s}		18	29	42	79	123	177	230	281
Partial safety factor	γMs						,5			
tainless steel grade A2-70, A4-70	V _{Rk,s}		13	20	30	55	86	124	161	196
artial safety factor	γMs						,56			
tainless steel grade A4-80	V _{Rk,s}		15	23	34	63	98	141	184	224
artial safety factor	γMs						,33			
tainless steel grade 1.4529	$V_{Rk,s}$		13	20	30	55	86	124	161	196
artial safety factor	γMs				_		,25			
tainless steel grade 1.4565	V _{Rk,s}	[kN]	13	20	30	55	86	124	161	196
artial safety factor	γMs	; [-]				1	,56			
haracteristic resistance of group of faste										
Puctility factor $k_7 = 1,0$ for steel with rup	oture elonga	ation A ₅ :	>8%							
teel failure with lever arm			140		1440	140	1400	10.4	1407	1400
ize			M8	M10	M12	M16	M20	M24	M27	M30
teel grade 4.6		[N.m]	15	30	52	133	260	449	666	900
artial safety factor	γMs						,67			
teel grade 4.8		[N.m]	15	30	52	133	260	449	666	900
Partial safety factor	γMs						,25	1		
teel grade 5.8	M ^o Rk,s		19	37	66	166	325	561	832	1125
artial safety factor	γMs				105		,25		1000	1700
teel grade 8.8	M ^o Rk,s	[N.m]	30	60	105	266	519	898	1332	1799
artial safety factor	γMs						,25			
teel grade 10.9	M ^o Rk,s	5 [N.m]	37	75	131	333	649	1123	1664	2249
artial safety factor	γMs						,50			
tainless steel grade A2-70, A4-70	M ^o Rk,s	[N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs						,56		1	
tainless steel grade A4-80	M ^o Rk,s	§ [N.m]	30	60	105	266	519	898	1332	1799
artial safety factor	γMs			•			,33			
tainless steel grade 1.4529	M ^o Rk,s	₅ [N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs						,25			
tainless steel grade 1.4565	M ^o Rk,s	5 [N.m]	26	52	92	233	454	786	1165	1574
artial safety factor	γMs	, [-]				1	,56			
oncrete pryout failure										
actor for resistance to pry-out failure	k	8 [-]					2			
· · · · ·										
concrete edge failure					1440		Her		Luc-	
ize			M8	M10	M12	M16	M20	M24	-	M30
Outside diameter of fastener	d _{nom}		8	10	12	16	20	24	27	30
ffective length of fastener	lf	[mm]				min (h _e	_f , 8 d _{nor}	n)		

Table C3: Design method EN 1992-4

Sika AnchorFix[®]-3030

Performances

Design according to EN 1992-4 Characteristic resistance for shear loads - threaded rod

Table C4: Design method EN 1992-4 Characteristic values of resistance to shear load of rebar

Steel failure without leve	er arm							
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	V _{Rk,s} [kN]	14	22	31	55	86	135	221
Partial safety factor	γms [-]				1,5			
Characteristic resistance of	of group of fasteners							
Ductility factor	$k_7 = 1,0$ for steel with rup	oture elc	ngation	A ₅ >8%				

Steel failure with lever arm									
Size			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Rebar BSt 500 S	M ^o Rk,s [N	.m]	33	65	112	265	518	1013	2122
Partial safety factor	γMs	[-]				1,5			
Concrete pryout failure									
Factor for resistance to pry-out failure	k ₈	[-]				2			

Concrete edge failure								
Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Outside diameter of fastener d _{nom}	[mm]	8	10	12	16	20	25	32
Effective length of fastener 4f	[mm]			min	i (h _{ef} , 8 c	nom)		

Sika AnchorFix[®]-3030

Performances Design according to EN 1992-4 Characteristic resistance for shear loads - rebar

Table C5: Displacement of threaded rod under tension and shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30		
Tensic	on load										
Uncra	cked conc	rete									
δΝΟ	[mm/kN]	0,03	0,02	0,02	0,02	0,01	0,01	0,01	0,01		
δι∞	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,01	0,01		
Crack	Cracked concrete										
δΝΟ	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02	0,02		
δι∞	[mm/kN]	0,35	0,21	0,14	0,12	0,08	0,07	0,07	0,07		
Shear	load										
δν0	[mm/kN]	0,71	0,45	0,31	0,17	0,11	0,07	0,06	0,05		
δν∞	[mm/kN]	1,06	0,67	0,46	0,25	0,16	0,11	0,08	0,07		

Table C6: Displacement of rebar under tension and shear load

Size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tensio	on load							
Uncra	cked conc	rete						
δΝΟ	[mm/kN]	0,04	0,03	0,02	0,01	0,01	0,01	0,01
δι∞	[mm/kN]	0,08	0,05	0,04	0,02	0,02	0,01	0,01
Crack	ed concre	te						
δΝΟ	[mm/kN]	0,05	0,04	0,03	0,03	0,02	0,02	0,02
δι∞	[mm/kN]	0,35	0,21	0,17	0,11	0,08	0,07	0,06
Shear	load							
δνο	[mm/kN]	0,38	0,24	0,17	0,10	0,06	0,04	0,02
δv∞	[mm/kN]	0,56	0,36	0,25	0,14	0,09	0,06	0,04

Sika AnchorFix[®]-3030

Performances

Displacement for threaded rod and rebar

Size			M8	M10	M12	M16	M20	M24	M27	M30
Tension load				•						•
Steel failure										
Characteristic resistance grade 4.6	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]				2,0	00			
Characteristic resistance grade 4.8	N _{Rk,s,eq,C1}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γMs	[-]	_	_		1,5	50		_	
Characteristic resistance grade 5.8	N _{Rk,s,eq,C1}	[kN]	18	29	42	79	123	177	230	281
Partial safety factor	γMs	[-]	_	_		1,5				
Characteristic resistance grade 8.8	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]	_	_		1,5		_		
Characteristic resistance grade 10.9	N _{Rk,s,eq,C1}	[kN]	37	58	84	157	245	353	459	561
Partial safety factor	γMs	[-]	•.		•	1,:				
Characteristic resistance A2-70, A4-70	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]			00	1,8			021	000
Characteristic resistance A4-80	N _{Rk,s,eq,C1}	[kN]	29	46	67	126	196	282	367	449
Partial safety factor	γMs	[-]			0.	1,6				
Characteristic resistance 1.4529	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]			00	1,			02.	000
Characteristic resistance 1.4565	N _{Rk,s,eq,C1}	[kN]	26	41	59	110	172	247	321	393
Partial safety factor	γMs	[-]			00	1.8			021	000
Combined pullout and concrete cone fail			o for a	workin	a life o	f 50 ve	ars ar	nd 100	vears	
Characteristic bond resistance					3	,.			,	
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	9,4	8,5	10,0	8,7	7,4	7.7	5,7	4,9
Installation safety factor	γinst	[-]	0,1	0,0	10,0	1	,	,,,	0,1	1,0
	That						,0			
Shear load										
Steel failure without lever arm										
Characteristic resistance grade 4.6	V _{Rk,s,eq,C1}	[kN]	5	9	13	20	32	28	37	45
	V _{Rk,s,eq,C1} γMs	[kN] [-]	5	9	13	20	-	28	37	45
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8		[-] [kN]	5	9	13 13	1,6 20	67 32	28 28	37 37	45
Characteristic resistance grade 4.6 Partial safety factor	γMs	[-]		-		1,6	67 32	_	-	-
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8	γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN]		-		1,6 20 1,2 26	67 32 25 40	_	-	-
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor	γms V _{Rk,s,eq,C1} γms	[-] [kN] [-]	5	9	13	1,6 20 1,2	67 32 25 40	28	37	45
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN]	5	9	13	1,6 20 1,2 26 1,2 41	67 32 25 40 25 64	28	37	45
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs	[-] [kN] [-] [kN] [-]	5	9 11	13 16	1,6 20 1,2 26 1,2	67 32 25 40 25 64	28 35	37 46	45 56
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8	<u>γMs</u> V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs	[-] [kN] [-] [kN] [-] [kN]	5	9 11	13 16	1,6 20 1,2 26 1,2 41	67 32 25 40 25 64	28 35	37 46	45 56 90
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor	γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN] [-] [kN] [-]	5 7 11	9 11 17	13 16 25	1,0 20 1,2 26 1,2 41 1,2	67 32 25 40 25 64 25 80	28 35 56	37 46 73	45 56 90
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 8.9 Partial safety factor	<u>γ</u> Ms V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1} γMs V _{Rk,s,eq,C1}	[-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 7 11	9 11 17	13 16 25	1,0 20 1,2 26 1,2 41 1,2 51	67 32 25 40 25 64 25 80	28 35 56	37 46 73	45 56 90
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor	γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1 γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 7 11 14	9 11 17 22	13 16 25 32	1,0 20 1,2 26 1,2 41 1,2 51	67 32 25 40 25 64 25 64 25 80 50 56	28 35 56 71	37 46 73 92	45 56 90 112
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor	<u>γ</u> Ms V _{Rk,s,eq} ,C1 γMs V _{Rk,s,eq} ,C1 γMs V _{Rk,s,eq} ,C1 γMs V _{Rk,s,eq} ,C1 γMs V _{Rk,s,eq} ,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 7 11 14	9 11 17 22	13 16 25 32	1,6 20 1,2 26 1,2 41 1,2 51 1,5 36 1,5 41	37 32 25 40 25 64 25 80 50 56 56 64	28 35 56 71	37 46 73 92	45 56 90 112
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance 42-70 , A4-70 Partial safety factor	γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 7 11 14 10	9 11 17 22 15	13 16 25 32 22	1,6 20 1,2 26 1,2 41 1,2 51 1,4 36 1,4	37 32 25 40 25 64 25 80 50 56 56 64	28 35 56 71 49	37 46 73 92 64	45 56 90 112 79
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529	γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 7 11 14 10	9 11 17 22 15	13 16 25 32 22	1,6 20 1,2 26 41 1,2 51 1,5 36 1,5 41 1,5 36	32 32 25 40 25 64 25 80 50 56 64 33 56	28 35 56 71 49	37 46 73 92 64	45 56 90 112 79
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor	γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 7 11 14 10 11	9 11 17 22 15 17	13 16 25 32 22 25	1,6 20 1,2 26 41 1,2 51 1,5 36 1,5 41 1,5	32 32 25 40 25 64 25 80 50 56 64 33 56	28 35 56 71 49 56	37 46 73 92 64 73	45 56 90 112 79 90
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529	γMs VRk,s,eq,C1 γMs	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN]	5 7 11 14 10 11	9 11 17 22 15 17	13 16 25 32 22 25	1,6 20 1,2 26 41 1,2 51 1,5 36 1,5 41 1,5 36	32 32 25 40 25 64 25 80 50 56 64 33 56	28 35 56 71 49 56	37 46 73 92 64 73	45 56 90 112 79 90
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor	γMs VRk,s,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-]	5 7 11 14 10 11 10	9 11 17 22 15 17 15	13 16 25 32 22 25 22 25 22	1,6 20 1,2 26 41 1,2 51 1,5 36 1,5 41 1,5 36 1,5 36 1,5 36	37 32 25 40 25 64 25 80 50 56 64 33 56 25 56 56 56 56 56 56 56	28 35 56 71 49 56 49	37 46 73 92 64 73 64	45 56 90 112 79 90 79
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	γMs VRk,s,eq,C1 γMs vRs,eq,C1 γMs vRs,eq,C1	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-] [c] [c] [-] [c] [-] [c]	5 7 11 14 10 10 10 be mul	9 11 17 22 15 17 15 15 15 15	13 16 25 32 22 25 22 25 22 25 22 25 22 25 22 22 22 22	1,6 20 1,2 26 1,2 41 1,2 51 1,5 36 1,5 36 1,5 36 1,5 36	37 32 25 40 25 64 25 80 50 56 64 33 56 25 56 56 56 56 56 56 56 56 56 56 56 56	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 112 79 90 79 79
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70, A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic shear load resistance V _{Rk,s}	γMs VRk,s,eq,C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRtherapped to the Table alvanized co	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-] [c] [c] [-] [c] [-] [c]	5 7 11 14 10 10 10 be mul	9 11 17 22 15 17 15 15 15 15	13 16 25 32 22 25 22 25 22 25 22 25 22 25 22 22 22 22	1,6 20 1,2 26 1,2 41 1,2 51 1,5 36 1,5 36 1,5 36 1,5 36	37 32 25 40 25 64 25 80 50 56 64 33 56 25 56 56 56 56 56 56 56 56 56 56 56 56	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 112 79 90 79 79
Characteristic resistance grade 4.6 Partial safety factor Characteristic resistance grade 4.8 Partial safety factor Characteristic resistance grade 5.8 Partial safety factor Characteristic resistance grade 8.8 Partial safety factor Characteristic resistance grade 10.9 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor Characteristic resistance A2-70 , A4-70 Partial safety factor Characteristic resistance A4-80 Partial safety factor Characteristic resistance 1.4529 Partial safety factor Characteristic resistance 1.4565 Partial safety factor Characteristic resistance 1.4565 Partial safety factor	γMs VRk,s,eq,C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRk,s,eq.C1 γMs VRtherapped to the Table alvanized co	[-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [kN] [-] [-] [c] [c] [-] [c] [-] [c]	5 7 11 14 10 10 10 be mul	9 11 17 22 15 17 15 15 15 15	13 16 25 32 22 25 22 25 22 25 22 25 22 25 22 22 22 22	1,6 20 1,2 26 1,2 41 1,2 51 1,5 36 1,5 36 1,5 36 1,5 36	37 32 25 40 25 64 25 80 50 56 64 33 56 25 56 56 56 56 56 56 56 56 56 56 56 56	28 35 56 71 49 56 49 49	37 46 73 92 64 73 64 64	45 56 90 112 79 90 79 79

The anchor shall be used with minimum rupture elongation after fracture A_5 equal to 19%.

Sika AnchorFix®-3030

Performances

Seismic performance category C1 of threaded rod

Table C8: Seismic performance category C1 of rebar

Size			Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Tension load								
Steel failure								
Rebar BSt 500 S	N _{Rk,s,eq,C1}	[kN]	43	62	111	173	270	442
Partial safety factor	γMs	[-]			1	,4		
Combined pullout and concrete cone	failure in concr	ete C20/25	i for a w	orking lif	e of 50 y	ears and	d 100 yea	ars
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C1}	[N/mm ²]	9,4	9,8	9,5	8,8	8,0	5,3
Dry and wet concrete								
Installation safety factor	γinst	[-]			1	,0		
Flooded hole								
Installation safety factor	γinst	[-]			1	,2		
Shear load								
Steel failure without lever arm								
Rebar BSt 500 S	V _{Rk,s,eq,C1}	[kN]	16	23	41	69	67	111
Partial safety factor	γMs	[-]			1	,5		
Factor for annular gap	α_{gap}	[-]			0	,5		

Sika AnchorFix®-3030

Performances

Seismic performance category C1 of rebar

Size			M12	M16	M20
Tension load					
Steel failure					
Characteristic resistance grade 4.6	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]		2,00	
Characteristic resistance grade 4.8	N _{Rk,s,eq,C2}	[kN]	34	63	98
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance grade 5.8	N _{Rk,s,eq,C2}	[kN]	42	79	123
Partial safety factor	γMs	[-]	67	1,50	106
Characteristic resistance grade 8.8	N _{Rk,s,eq,C2}	[kN]	67	126 1,50	196
Partial safety factor	γMs	[-]	0.4		045
Characteristic resistance grade 10.9 Partial safety factor	N _{Rk,s,eq,C2}	[kN] [-]	84	157 1,33	245
Characteristic resistance A2-70, A4-70	γMs N _{Rk,s,eq,C2}	[⁻]	59	110	172
Partial safety factor	γMs	[-]		1,87	172
Characteristic resistance A4-80	N _{Rk,s,eq,C2}	[kN]	67	126	196
Partial safety factor	γMs	[-]	0.	1,60	100
Characteristic resistance 1.4529	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,50	=
Characteristic resistance 1.4565	N _{Rk,s,eq,C2}	[kN]	59	110	172
Partial safety factor	γMs	[-]		1,87	
Combined pullout and concrete cone fa	ilure in concr	ete C20/25 f	or a working lif	e of 50 years and	100 years
Characteristic bond resistance					
Temperature T3: -40°C to +70°C	τ _{Rk,p,eq,C2}	[N/mm ²]	3,5	4,0	4,5
Installation safety factor	γinst	[-]		1,0	
Shear load					
Steel failure without lever arm					
Characteristic resistance grade 4.6	V _{Rk,s,eq,C2}	[kN]	13	18	28
Partial safety factor	¥ κκ,s,eq,cz γMs	[-]	10	1,67	20
Characteristic resistance grade 4.8	V _{Rk,s,eq,C2}	[kN]	13	18	28
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 5.8	V _{Rk,s,eq,C2}	[kN]	16	22	35
Partial safety factor	<u>ΥΜs</u>	[-]		1,25	
Characteristic resistance grade 8.8	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance grade 10.9	$V_{Rk,s,eq,C2}$	[kN]	32	45	70
Partial safety factor	γMs	[-]		1,50	
Characteristic resistance A2-70, A4-70	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic resistance A4-80	V _{Rk,s,eq,C2}	[kN]	25	36	56
Partial safety factor	γMs	[-]		1,33	
Characteristic resistance 1.4529	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,25	
Characteristic resistance 1.4565	V _{Rk,s,eq,C2}	[kN]	22	31	49
Partial safety factor	γMs	[-]		1,56	
Characteristic shear load resistance V_{Rk}				blowing reduction fa	actor for hot-dip
Reduction factor for hot-dip galvanized roc	galvanized co		0,46	0,61	0,61
			0,40		0,01
Factor for annular gap	α _{gap}	[-]		0,5	
Table C10: Displacement under ter	<u>nsile</u> and sh	ear load -	seismic cateo	gory C2 of threa	ded rod
	120				
	,77				
	,68				
	,94				
$\delta_{V,eq(ULS)}$ [mm] 10,20 9,05 10),99				
The anchor shall be used with minir	num rupture	elongatior	after fracture	A₅ equal to 199	%.
ika AnchorFix [®] -3030	• •				
				A	
Performances				An	nex C 8
Seismic performance category C2 o					