

Compliance Verification of ESD Control Flooring

Sikafloor ® MultiFlex PS-33 ESD

1. Index

1. Index	2
2. Introduction and Scope	3
3. Flooring under Test	
4. Test Conditions and Instrumentation	
5. Test Methods	4
6. Requirements	4
6.1 EPA Requirements [1, 2]	4
6.2 Personnel Grounding Requirements [2]	4
7. Test Results	5
7.1 Flooring [3]	5
7.2 Person/Footwear/Flooring System [3]	5
8. Observations	
9. Summary and Conclusions	8
10. Discussion and Suggestions	
11. References	

Table 1: General ir	nformation of	the document
---------------------	---------------	--------------

Document	No: C671/2020	Version: 1.0	Date: 6.3.2020
Date(s) of test	24.2.2020		
Place of test	Ahvenistontie 20, 13	530 Hämeenlinna	
Client	Oy Sika Finland Ab,	PL49, Koskelontie 23 C,	02921 Espoo
Author(s)	Cascade Metrology	SD Engineer, Certified by Oy, Electrostatics labora d, GSM +358 44 5688 59	tory, Hakulintie 32,
Reviewer(s)	Ari Aro, Oy Sika Fin	and Ab	
Assessment	IEC 61340-6-1: 2018	3, Electrostatic control for	r healthcare - General
criteria	requirements for fac	ilities [1]	
	IEC 61340-5-1:2016	, Protection of electronic	devices from
	electrostatic phenon	nena [2]	
Notes	Technical informatio	n of the report is classifie	ed confidential
Date and place	Signatu	ire	ATIFI
	Tom	Thesialtake	
Lohja 6.3.2020	Toni Viheriä	ikoski	GINER

2. Introduction and Scope

Electrostatic properties of the polyurethane flooring Sikafloor ® MultiFlex PS-33 ESD were measured and analysed February 24, 2020, at Kanta-Hämeen keskussairaala, Ahvenistontie 20, 13530 Hämeenlinna. Summary of results and conclusions are presented in Chapter 9. Suggestions for improvements are in Chapter 10.

3. Flooring under Test

Identification of the flooring under test is shown in Table 2.

Target	Test installation
Supplier	Sika Finland
Type of the product	Polyurethane ESD control flooring
Name of the product	Sikafloor® MultiFlex PS-33 ESD
Surface	Smooth, Mat, Grey
Area	Test area, approximately 12 m ²
Location	Kanta-Hämeen keskussairaala, Hämeenlinna
Installation date(s)	18.2.2020
Treatment	N/A, dry cleaning during measurements when necessary

Table 2: Product identification

4. Test Conditions and Instrumentation

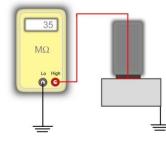
Test conditions are shown in Table 3. Measurement equipment is presented in Table 4.

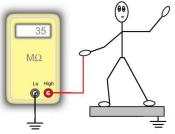
Table 3: Ambient test conditions

Area	Temperature	Relative Humidity
Test Room	24°C ± 2°C	20 % ± 3 %

Measurements are carried out, when applicable, in reference to ISO/IEC/EN 17025 "General Requirements for the Competence of Calibration and Testing Laboratories".

Calibrations are traceable to national standards laboratories through the unbroken chain of stated uncertainties. Calibration periods are based on the periodic verifications and traceable history of the instruments.




Table 4: Measurement equipment

Manufacturer	Туре	Model	Serial number
Tektronix	Oscilloscope	TDS 2022	C031701
Trek	Electrostatic sensor	541A-1	1265
Megger	Isolation multimeter	BMM2000ESD	6111-550/061106/1387
Megger	Isolation multimeter	MIT415/2	101489531
ЗM	Rg electrode	IEC	N/A
Vaisala	Humidity meter	HM 41	M1850876

5. Test Methods

Resistance to ground was measured in accordance with IEC 61340-4-1 [3] (Figure 1). Person footwear flooring system was measured in accordance with IEC 61340-4-5 [4] (Figures 2 and 3).

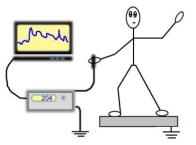


Figure 1: Resistance to ground

Figure 2: System resistance

Figure 3: Body potential

6. Requirements

6.1 EPA Requirements [1, 2]

Flooring: $R_g < 1$ G Ω .

Cascade

6.2 Personnel Grounding Requirements [2]

Person/footwear/flooring system: $R_g < 1 \text{ G}\Omega$ and body voltage, |V| < 100 V (average of 5 highest peaks).

7. Test Results

7.1 Flooring [3]

Resistance to Ground

Results of 10 measurements: $140 \text{ k}\Omega < R_g < 900 \text{ k}\Omega$, Median was $400 \text{ k}\Omega$. Measurements were recorded after 15 s electrification. Individual test results with 15 s electrification is shown in Table 5. Results measured at 100 V were > 1 M Ω at 10 V.

Table	5: Resistance	to ground,	, series of	f 10 measuremei	nts

Measurement	Voltage (V)	Result (kΩ)
1	10	400
2	10	200
3	10	140
4	100	600
5	10	400
6	500	
7	200	
8	900	
9	300	
10	800	
Minimum	140	
Maximum	900	
Median	400	
Average	444	
Geometric mean	377	
Standard deviation		258

7.2 Person/Footwear/Flooring System [3]

Reference footwear:- Sievi Key (Person footwear system: $R_g \sim 8 M\Omega$),- Sievi Roller (Person footwear system: $R_g \sim 10 M\Omega$).

Resistance to Ground

Sievi Key: (10 measurements): 11 M Ω < R_g < 18 M Ω , Median 15 M Ω (Table 6). Sievi Roller (10 measurements): 13 M Ω < R_g < 20 M Ω , Median 16 M Ω .

Measurement	Result (M Ω)	
1	100	11
2	100	13
3	100	14
4	100	15
5	100	16
6	14	
7	16	
8	14	
9	16	
10	18	
Minimum	11	
Maximum	18	
Median	15	
Average	15	
Geometric mean		15
Standard deviation		2

Table 6: Resistance to ground, Sievi Key, series of 10 measurements

Body Voltage

Cascade

etrology

Examples of six step walking pattern test results are shown in Figures 4 and 5.

Averages of the five highest peaks during 60 s measurement sequences:

- Sievi Key and Sievi Roller: |V| < 100 V.

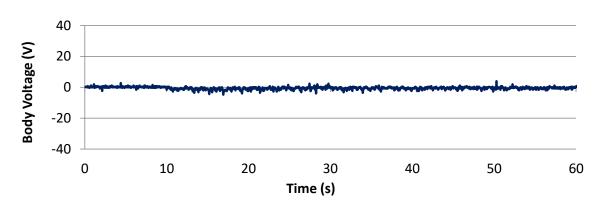


Figure 4: Example of human body potential measurement, Sievi Key

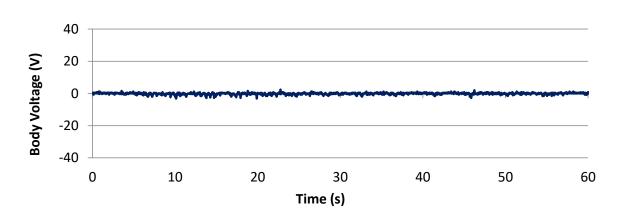


Figure 5: Examples of human body potentials, Sievi Roller

8. Observations

Test flooring had two groundable points. Resistance between the points without the earth connections was approximately 700 Ω .

The effect of abrasion resistance was demonstrated with the grinding test. A light grinding with the abrasive paper roughness of 240 increased the resistance with the factor of approximately four. An example of the resistance to ground measurement is shown in Figure 6.

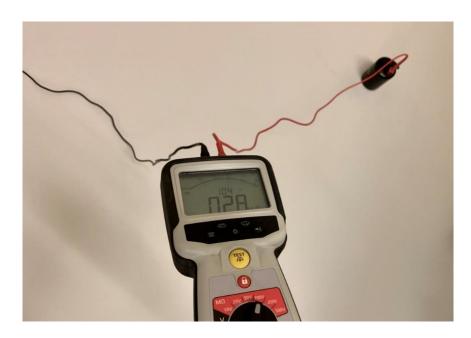


Figure 6: Resistance to ground measurement on the flooring under test

8/8

6.3.2020

9. Summary and Conclusions

The flooring under test met the requirements of flooring used to ground personnel and equipment in reference to IEC 61340-6-1:2018 [1].

The flooring under test met the electrostatic protected area requirements in reference to IEC 61340-5-1:2016 [2].

Personnel grounding requirements of the person/footwear/flooring system were met with the tested person/footwear combinations (IEC 61340-5-1:2016).

10. Discussion and Suggestions

Ageing and treatment may affect the electrical conductivity of the flooring. Acceptance test and periodic compliance verification is recommended.

Resistivity and contact electrification between the flooring and footwear are reversely proportional to the moisture. In low humidity conditions charge generation will be more effective and dissipation slows down. When indoor humidity varies in seasons, compliance verification measurements shall be carried out in the conditions of low humidity.

11. References

- [1] IEC 61340-6-1: 2018, Electrostatics Part 6-1: Electrostatic control for healthcare -General requirements for facilities
- [2] IEC 61340-5-1:2016, Electrostatics Part 5-1Protection of electronic devices from electrostatic phenomena General Requirements
- [3] IEC 61340-4-1:2004+A1:2015: Standard test methods for specific applications -Electrical resistance of floor coverings and installed floors
- [4] IEC 61340-4-5:2018: Standard test methods for specific applications Methods for characterizing the electrostatic protection of footwear and flooring in combination with a person

